Transforming Research and Education in the 21st Century
The Role of Open Access

Manfred D. Laubichler

Arizona State University
Santa Fe Institute
Marine Biological Laboratory
Max Planck Institute for the History of Science
Outline

1. The Research and Education (R&E) Enterprise needs to be transformed, so that it can be both sustainable and responsive to the needs of society

2. Open Access as a transformative and disruptive technology is a central part of this transformation

3. Open Access supports the core competencies that students and citizens need in the 21st century (to navigate, authenticate, integrate, innovate)

4. To achieve these goals we need to “open” several closed boxes (silos) in the current R&E landscape

5. This leads to a more inclusive interpretation of Open Access
“We define excellence not by whom we exclude, but by whom we manage to include.”

Michael Crow
ASU President
Design Imperative of the New American University Model
Challenges to the Research and Education Enterprise

Per Unit Costs of Education are Reaching Unsustainable Levels
Challenges to the Research and Education Enterprise

Decreasing Research Funding (in the US and other countries) in spite of ever increasing Costs of Research
Challenges to the Research and Education Enterprise

Additional Challenges

=> Disappearing traditional Career Paths for Ph.D. students in both Sciences and Humanities

=> A R&E “business model” that requires an unsustainable number of Ph.D. students and post-docs, leading to “lost generations”

=> Curricula that still perpetuate disciplinary traditions, while real world problems require trans-disciplinary approaches

THERE IS WIDESPREAD AGREEMENT THAT THE R&E ENTERPRISE IS IN NEED OF URGENT TRANSFORMATION
What is the role of Open Access in the Transformation of the R&E Enterprise?

The internet as a disruptive technology

Challenges related to the internet today

=> Signal to Noise Ratio

=> Increasing commercialization

=> Emerging Monopolies

Joseph Schumpeter

Open Access is needed to again disrupt the emerging patterns of an increasingly commercial and “closed” internet and to improve the signal to noise ratio.
If Open Access is directed towards a broad public, what skills do people need to take advantage of it?

Core Competencies of Students and Citizens in the 21st Century

1. Navigate
2. Authenticate
3. Integrate
4. Innovate
What impediments to we have to overcome to teach and apply these core competencies?

Disciplinary Entrenchment

Outdated and Constrained Infrastructure

Wrong Incentive Structure

Misleading Expectations

Overcoming these challenges leads to a broader conception of OA

“Traditional” OA is essential in overcoming these challenges
Audio: Emergence is happening all around us, and not just in nature

On the podcast/radio show Big Picture Science, SFI Research Fellow Simon DeDeo explains how and why emergence abounds not only in nature, but also in human social systems. ... More

All News
Addressing Real World Problems

Climate Action: Who Will Lead?

By Chris Spence

Thought Leader Series
Institute at the Golden Gate director says parks can spark bottom-up change | read more

Sustainability Scientists & Scholars
Emerging Transdisciplinary Research Fields

And Why CUSP Came To Be

THE NEW SCIENCE OF CITIES

MICHAEL BATTY
Stiftung Mercator is funding a “global classroom” at Leuphana University in Lüneburg and at Arizona State University (ASU). The project gives 20 students from each year at Leuphana and 20 students from each year at ASU the chance to learn how to pursue joint academic work in two parallel courses as part of a “comprehensive studies programme”. Educationally speaking, the project is based on the concept of “curriculum reform”, and aims to improve studies and teaching. In the spirit of learning through research, the project allows students to jointly compile academic papers or, for example, a textbook on the subject of sustainability, with the help of a virtual and at times real “global classroom”.

Globalized Education beyond the MOOC
The Embryo Project Encyclopedia

Recording and contextualizing the science of embryos, development, and reproduction.

Home About Browse by Topic Browse by Format Search

Newsroom

The new Embryo Project Encyclopedia website launched in April 2013 in its third iteration since 2007, replacing the 2009 version. It is a collaboration between Arizona State University and the Marine Biological Laboratory in Woods Hole, Massachusetts.

Events

- April 26 Joint Atlantic Seminar for the History of Biology

What's New?

- Rosalind Elsie Franklin (1920-1958)
- Endoderm
- Germ Layers

The Embryo Project is supported by the National Science Foundation, Arizona State University, Center for Biology and Society, the Max Planck Institute for the History of Science in Berlin, and the MBL WHOI Library.
Computational and Big Data History of Science

Figure 1: Advancing a comprehensive computational science program requires coordinated initiatives in developing and supporting interdisciplinary research, enabling cyberinfrastructure, and underlying research and culture in computation.
An Integrated, Collaborative and OPEN Research System

A Collaboration of ASU, Indiana University and the Max Planck Institute for the History of Science
Some Preliminary Results

History of the Max Planck Society
Computational Analysis of the Department Baldwin
MPI for Chemical Ecology, Jena
Question: How can we assess the influence of a Research Program?

Figure 1. Coauthorship network from the journal Plant Physiology, 1999 - 2002 (inclusive). Ian Baldwin is represented by a red node, and his coauthors are represented as blue nodes. The whole graph is shown at right, and the focal region is boxed.
Figure 2. Coauthorship network from the journal Plant Physiology, 2000 - 2003 (inclusive). Ian Baldwin is represented by a red node, and his coauthors are represented as blue nodes. The whole graph is shown at left, and the focal region is boxed. Baldwin is now part of the main component, situated near the periphery.
Figure 3. Coauthorship network from the journal Plant Physiology, 2007 - 2010 (inclusive). Ian Baldwin is represented by a red node, and his coauthors are represented as blue nodes.
A New Metric measuring the degree of collaboration
Closeness Centrality

\[c''(i) = \sum_k \frac{1}{d_{ik}} \frac{1}{N} \]
(eq. 3)

where \(k \) is the index of the \(k \)th node in the set of nodes in the same component as focal node \(i \), and \(N \) is the total number of nodes in the network (all components).

This makes implementation in Python a breeze:

```python
1 c = 0
2 for d in networkx.shortest_path_length(graph, i).values():
3     c += 1/float(d)
4 c = c/len(graph)
```

global_closeness_centrality.py hosted with ❤️ by GitHub

```python
1 c = 0
2 for d in networkx.shortest_path_length(graph, i).values():
3     c += 1/float(d)
4 c = c/len(graph)
```

global_closeness_centrality.py hosted with ❤️ by GitHub
The Rise of a New Research Paradigm
Transforming Infrastructure

4th Paradigm Science

- A new method of pushing forward the frontiers of knowledge, enabled by new technologies for gathering, manipulating, analyzing and displaying data.
- Complementing data-generating science with data-driven science
- Ecumenical
 - Astronomy
 - Physics
 - Economics
 - Climate
 - Genomics
- Transdisciplinary
Next Generation Cyber Capability
for
Biomedical, Physical, Social Sciences and Humanities

OA (publication and data) is needed for this capability to reach its full potential

The NGCC Data Science “Instrument” - an elemental whole composed of:

- Physical Capacity
 - Ultra-high bandwidth Networks
 - Large-scale storage
 - Multiple “flavors” of computation
- Logical Capabilities
 - Software
 - Metadata
 - Semantics
- Human Resources
 - Transdisciplinary Teams
Real time consumer data

- cardiovascular
- diabetes
- fitness

shipments of telehealth devices grow to about 2 million by 2013

Source: http://mobihealthnews.com
Marine Data Harmonization IG

Status: Pending Action

The objective of this working group is to promote the development of a common global framework for the management of marine data to address the impact of natural and man-made phenomena. Multi-disciplinary collaboration and large volumes of good quality interoperable data which can be easily located and accessed is required for this to support the development of this ecosystem based approach to marine research.
Changing Incentives and Expectations

The Need for *Team Science* and the Difficulties of Young Researchers to Participate in These Projects

=> New Evaluation Metrics and Career Paths
=> Open Access and Open Evaluation

Examples: High Energy Physics, the New American University Experiment, etc.

Publishing Data and Getting Credit for it (see Research Data Alliance)

More fluidity between academia, industry, start-ups, cultural institutions, (new) media => a (new) and Global Enlightenment
"Traditional" OA is essential in overcoming these challenges. Overcoming these challenges will lead to an even broader conception of OA.